\(A=\sum\frac{1}{a^2+bc}\leq\sum\frac{1}{4}(\frac{1}{a^2}+\frac{1}{bc})=\frac{1}{4}\sum\frac{1}{a^2}+\frac{1}{4}\sum\frac{1}{bc}\leq\frac{1}{4}\sum\frac{1}{a^2}+\frac{1}{4}\sum\frac{ 1}{a^2}=\frac{1}{2}\sum\frac{1}{a^2}=\frac{1}{6}\)
\(A=\sum\frac{1}{a^2+bc}\leq\sum\frac{1}{4}(\frac{1}{a^2}+\frac{1}{bc})=\frac{1}{4}\sum\frac{1}{a^2}+\frac{1}{4}\sum\frac{1}{bc}\leq\frac{1}{4}\sum\frac{1}{a^2}+\frac{1}{4}\sum\frac{ 1}{a^2}=\frac{1}{2}\sum\frac{1}{a^2}=\frac{1}{6}\)
Cho a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\).Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)
1 . Cho các số thực a, b, c dương thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tính giá trị lớn nhất của biể thức: \(P=\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
2 .
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
Cho 3 số thực dương \(a;b;c\) thỏa mãn: \(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+2019\)
Tìm giá trị lớn nhất của biểu thức \(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Cho các số thực dương a,b,c thỏa mãn ab+bc+ac=1
Tìm giá trị lớn nhất của biểu thức \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt[]{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)
Cho 3 số thực dương a, b, c thoả mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P=\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
cho các số thực dương a , b , c . tìm giá trị nhỏ nhất \(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
Cho các số thực dương a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\). Tìm GTNN của biểu thức:
P=\(\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ca+3a^2+1}}\)
1 . Cho a,b,c là các số thực dương. Chứng minh
\(\frac{ab}{a+b+2c}+\frac{bc}{b+c+2a}+\frac{ca}{c+a+2b}\le\frac{1}{4}\left(a+b+c\right)\)
2 .
Cho a,b là hai số thực dương thỏa mãn: a+b≤1
Tìm giá trị nhỏ nhất của : \(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab\)
Cho a, b, c là các số thực dương abc=1. CMR: \(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\le\frac{3}{4}\)
Cho ba số thực dương a, b, c thỏa mãn abc=1. Tìm GTNN của biểu thức P=\(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ca+c+4}\)