§1. Bất đẳng thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Slice Peace

Cho các số thực dương a, b, c. CMR:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+2\sqrt{\frac{a}{b+c}.\frac{b}{c+a}.\frac{c}{a+b}}\ge2\)

Akai Haruma
17 tháng 1 2017 lúc 13:45

Hình như bạn bị lỗi một chút. Để phải là: CM

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{2abc}{(a+b)(b+c)(c+a)}}\geq 2\)

Giải như sau:

Đặt \(\left ( \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} \right )=(x,y,z)\). Khi đó, ta thu được điều kiện sau:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\Leftrightarrow xy+yz+xz+2xyz=1\)

Bài toán chuyển về CM \(x+y+z+\sqrt{2xyz}\geq 2\)\(\)

\(\Leftrightarrow x+y+z+\sqrt{1-(xy+yz+xz)}\geq 2\) \((\star)\)

Từ điều kiện $(1)$ , áp dụng BĐT Cauchy-Schwarz:

\(\left [ \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1} \right ][x(x+1)+y(y+1)+z(z+1)]\geq (x+y+z)^2\)

\(\Rightarrow x(x+1)+y(y+1)+z(z+1)\geq (x+y+z)^2\)

\(\Rightarrow x+y+z\geq 2(xy+yz+xz)\) $(1)$

Ta sẽ chứng minh \(2(xy+yz+xz)+\sqrt{1-(xy+yz+xz)}\geq 2\)$(2)$

Thật vậy:

Theo Am-Gm: \(1=xy+yz+xz+2xyz\leq xy+yz+xz+2\sqrt{\frac{(xy+yz+xz)^3}{27}}\)

Đặt \(\sqrt{\frac{xy+yz+xz}{3}}=t\). Ta có

\(1\leq 3t^2+2t^3\Leftrightarrow (t+1)^2(2t-1)\geq 0\Rightarrow t\geq\frac{1}{2}\)

Khi đó \((1)\Leftrightarrow 6t^2+\sqrt{1-3t^2}\geq 2\Leftrightarrow (2t-1)(2t+1)(3t^2-1)\leq0\)

Điều này luôn đúng do \(t\geq \frac{1}{2}\)\(1>xy+yz+xz=3t^2\)

Do đó $(1)$ được CM.

Từ \((1),(2)\Rightarrow (\star)\) đúng, bài toán được hoàn thành.

Dấu $=$ xảy ra khi $x=y=z=\frac{1}{2}$, hay $a=b=c$


Các câu hỏi tương tự
Bey Bey
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Nguyễn Uyên
Xem chi tiết
Lưu Thị Thảo Ly
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết
TXT Channel Funfun
Xem chi tiết
Kuramajiva
Xem chi tiết
Ngọc Ánh
Xem chi tiết