áp dụng bunhiacopxki ta có :
\(4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=4\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge1\left(đpcm\right)\)
áp dụng bunhiacopxki ta có :
\(4\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=4\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge1\left(đpcm\right)\)
cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d=4.CMR:
\(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
1)Cho a,b,c lần lượt là độ dài các cạnh BC,CA,AB của tam giác ABC. CMR \(\sin\dfrac{A}{2}\le\dfrac{a}{2\sqrt{bc}}\)
2)Cho a,b,c,d là các số thực tổng bằng 1. CMR: \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}\ge\dfrac{1}{2}\)
1.tìm tất cả các số nguyên dương a,b,c,d thỏa mãn a^2=b^3 ; c^3=d^4 ; a=d+98
2. cho các số dương a,b,c,d cmr trong 4 số
a2 +1/b +1/c ; b2 +1/c +1/d ; c2 +1/c+1/d ; d2+1/a+1/b có ít nhất một số không nhỏ hơn 3
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
Cho các số thực a, b, c, d thỏa mãn a > 1, b > 1, c > 1, d > 1. Chứng minh
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{d-1}+\frac{d^2}{a-1}\ge16\)
cho a+b+c+d=2 Chứng minh rằng \(a^2+b^2+c^2+d^2\ge1\)
Cho 4 số thực a, b, c thỏa mãn a ≥ b ≥ c ≥ d ≥0. Chứng minh
a) a2 - b2 +c2 ≥ (a-b+c)2
b) a2 - b2 +c2 -d2 ≥ (a-b+c-d)2
Cho a, b, c dương thỏa a +b + c = 3. Cmr: \(\frac{1}{2+a^2b}+\frac{1}{2+b^2c}+\frac{1}{2+c^2a}\ge1\)
Cho a,b,c là các số thực dương thỏa a+b+c=3
Chứng minh \(\dfrac{1}{2+a^2b}+\dfrac{1}{2+b^2c}+\dfrac{1}{2+c^2a}\ge1\)