Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Dang Khoa

Cho các số thực a và b thỏa mãn a + b +ab = 8. Tính giá trị nhỏ nhất của biểu thức \(a^2+b^2\) .

Akai Haruma
13 tháng 5 2021 lúc 23:02

Lời giải:

Áp dụng BĐT Cô-si:

$a^2+4\geq 2\sqrt{4a^2}=|4a|\geq 4a$

$b^2+4\geq |4b|\geq 4b$

$2(a^2+b^2)\geq 4|ab|\geq 4ab$

Cộng theo vế và thu gọn:

$3(a^2+b^2)+8\geq 4(a+b+ab)=32$

$\Rightarrow a^2+b^2\geq 8$

Vậy $a^2+b^2$ min bằng $8$. Giá trị này đạt tại $a=b=2$

Yeutoanhoc
13 tháng 5 2021 lúc 23:02

Áp dụng BĐT cosi:
`a^2+4>=4a`
`b^2+4>=4b`
`=>a^2+b^2+8>=4(a+b)(1)`
Áp dụng cosi:
`a^2+b^2>=2ab`
`=>2(a^2+b^2)>=4ab(2)`
Cộng từng vế (1)(2) ta có:
`3(a^2+b^2)+8>=4(a+b+ab)=32`
`<=>3(a^2+b^2)>=24`
`<=>(a^2+b^2)>=8`
Dấu "=" `<=>a=b=2`


Các câu hỏi tương tự
Hồ Ann
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
VUX NA
Xem chi tiết
Aurora
Xem chi tiết
VUX NA
Xem chi tiết
VUX NA
Xem chi tiết
Nhật Minh Trần
Xem chi tiết
Nhật Minh Trần
Xem chi tiết
VUX NA
Xem chi tiết