\(\frac{1}{2}x^2+\frac{1}{2}y^2\ge xy\) ; \(x^2+\frac{1}{4}z^2\ge zx\) ; \(y^2+\frac{1}{4}z^2\ge yz\)
\(\Rightarrow\frac{3}{2}x^2+\frac{3}{2}y^2+\frac{1}{2}z^2\ge xy+yz+zx=1\)
\(\Rightarrow3\left(x^2+y^2\right)+z^2\ge2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=y=\frac{1}{2}z\\xy+yz+zx=1\end{matrix}\right.\) \(\Rightarrow x=y=\frac{1}{2}z=\frac{1}{\sqrt{2}}\)