ta có: ab+bc+ca= 2017.abc
=> \(\dfrac{ab+bc+ca}{abc}=2017\)
=> \(\dfrac{b.\left(a+c\right)+ca}{abc}=2017\)
=> \(\dfrac{\left(a+c\right)+ca}{ac}=2017\)
=> a+c= 2017
Làm được tới đó thôi, ai giúp thì làm tiếp................
ta có: ab+bc+ca= 2017.abc
=> \(\dfrac{ab+bc+ca}{abc}=2017\)
=> \(\dfrac{b.\left(a+c\right)+ca}{abc}=2017\)
=> \(\dfrac{\left(a+c\right)+ca}{ac}=2017\)
=> a+c= 2017
Làm được tới đó thôi, ai giúp thì làm tiếp................
cho các số a,b,c khác 0 thỏa mãn a+b+c=1 và 1/a+1/b+1/c=0 .tính giá trị của biểu thức P= (a2+b2+c2)(bc/a2 +ca/b2 +ab/c2).
Đây là một số bài toán HOMC 2017 cho lớp 8 . Mình đăng lên cho các bạn làm thử;
1.Tính tổng tất cả các số tự nhiên n sao cho n2+n+1589 là số chính phương
2. Cho \(\Delta\) ABC, các đường cao AA' , BB' , CC' . CMR :
\(\dfrac{AB'}{AB}\times\dfrac{AC'}{AC}+\dfrac{BA'}{BA}\times\dfrac{BC'}{BC}+\dfrac{CB'}{CB}\times\dfrac{CA'}{CA}< 1\)
3. Tìm số tự nhiên a có 4 chữ số biết rằng a chia 132 dư 98 và a chia 131 dư 112
Cho a,b,c là các số thực thoả mãn:a+b+c=1. Chứng minh rằng:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{a+ab}{a+b}\ge2\)
cho a2000+b2000= a2001+b2001=a2002+b2002
Tính a2017+b2017
Chứng minh các đẳng thức
a) (x + a) . (x + b) = x2+ + (a + b) . x + ab
b) (x + a) . (x + b) . (x + c) = x3 + (a + b + c) . x2 + (ab + bc + ca) . x + abc.
phân tích đa thức thành nhân tử
ab(a+b) - bc(b+c) + ca(a+c) + abc
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(B=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}+\frac{1}{2017}\)
Tính \(\left(A-B\right)^{2016^{2017}}\)
Cho tam giác cân ABC(AB=AC). vẽ các đường cao BH, CK, AI
a, chứng minh BK=CH
b, chứng minh HC.AC=IC.BC
c, chứng minh KH//BC
d, cho biết BC=a, AB=AC=b. tính độ dài đoạn thẳng HK theo a và b
cho 3 số a,b,c thỏa mãn điều kiện \(\frac{1}{bc-a^2}+\frac{1}{ca-b^2}+\frac{1}{ab-c^2}=0\)
CMR: \(\frac{a}{\left(bc-a^2\right)^2}+\frac{b}{\left(ca-b^2\right)^2}+\frac{c}{\left(ab-c^2\right)^2}=0\)