cho các phương trình x^2+mx+ n và x^2+px+q trong đó m,n,p,q là các số hữu tỉ sao cho (m-p)^2+(n-q)^2 > 0. Chứng minh rằng nếu hai phương trình có một nghiệm chung thì các nghiệm còn lại của hai phương trình là hai số hữu tỉ phân biệt
Cho phương trình ẩn x: x2 – 2mx - 1 = 0 (1)
a) Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2.
b) Tìm các giá trị của m để: x12 + x22 – x1x2 = 7
3,cho phương trình bậc hai x2-2(m-1)x+m-2=0 . chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1,x2 . tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m
\(\text{cho phương trình : (x+1)^4 -(m-1)(x+1)-m^2+m-1=0}\)
chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị tham số của m
Biết phương trình \(x^3-ax^2+bx+3=0\) có nghiệm là \(\sqrt{2}\). Biết a và b là hai số hữu tỉ. Nghiệm hữu tỉ của phương trình này là...
cho phương trình \(ax^2+bx+c=0\)(a khác 0, a,b,c là số hữu tỉ) có nghiệm x=1+\(\sqrt{2}\). tìm nghiệm còn lại của phương trình trên
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b
Cho phương trình: -(m+4)x + 3m +3=0 (x là ẩn số) a) Chứng minh phương trình đã cho luôn có nghiệm với mọi gia trị của m b) Tính tổng và tích hai nghiệm của phương trình c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn: - x1 = x2 - + 8
1. cho phương trình :x2+5x+m-2=0( m là tham số)
a, giải phương trình khi m=-12
b, tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{x}{x_1-1}+\dfrac{1}{x_2-1}=2\)