a: Phương trình hoành độ giao điểm là:
2x+4=-x+1
=>2x+x=1-4
=>3x=-3
=>x=-1
Thay x=-1 vào y=-x+1, ta được:
y=-(-1)+1=2
Vậy: A(-1;2)
b: A(-1;-2); B(-1;4); O(0;0)
\(OA=\sqrt{\left(-1-0\right)^2+\left(-2-0\right)^2}=\sqrt{1+4}=\sqrt{5}\)
\(OB=\sqrt{\left(-1-0\right)^2+4^2}=\sqrt{16+1}=\sqrt{17}\)
\(AB=\sqrt{\left(-1+1\right)^2+\left(4+2\right)^2}=6\)
Xét ΔOAB có \(cosAOB=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{5+17-36}{2\cdot\sqrt{5}\cdot\sqrt{17}}=\dfrac{-7}{\sqrt{85}}\)
=>\(sinAOB=\sqrt{1-\left(-\dfrac{7}{\sqrt{85}}\right)^2}=\dfrac{6}{\sqrt{85}}\)
Diện tích tam giác OAB là:
\(S_{AOB}=\dfrac{1}{2}\cdot AO\cdot OB\cdot sinAOB\)
\(=\dfrac{1}{2}\cdot\dfrac{6}{\sqrt{85}}\cdot\sqrt{17}\cdot\sqrt{5}=3\)