a) Ta có: \(f\left(x\right)=-3x^2+x^4+2x+x^3-4\)
\(=x^4+x^3-3x^2+2x-4\)
Ta có: \(g\left(x\right)=x^3-4x^2+x^4-4+3x\)
\(=x^4+x^3-4x^2+3x-4\)
b) Ta có: \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(=x^4+x^3-3x^2+2x-4-x^4-x^3+4x^2-3x+4\)
\(=x^2-x\)
c) Đặt h(x)=0
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)