Giải bất phương trình
\(A_n^3\) +2 \(C_n^{n-2}\)\(\le\) 9n (1)
Cho đa giác đều \(A_1A_2.....A_n,\) (\(n\ge2\), n nguyên) nội tiếp đường tròn O. Biết rằng số tam giác có 3 đỉnh trong 2 n điểm \(A_1,A_2,....,.A_{2n}\) gấp 20 lần số hình chữ nhật có 4 đỉnh trong 2n điểm \(A_1A_2.....A_n\). Tìm n
Giải bất phương trình:
\(C_{n+2}^{n-1}\) + \(C_{n+2}^n\) > \(\frac{5}{2}\)\(A_n^2\)
Giải phương trình
\(C_n^4\)+\(C_n^5\)= 3\(C_{n+1}^6\)
Lập công thức tổng quát tính tổng: \(C_n^0+C_n^1+...+C^k_n\). (với \(k,n\in\mathbb{N*};k\leq n\))
a) Một lớp có 50 học sinh. Tính số cách phân công 4 bạn quét sân trường và 5 bạn xén cây bằng hai phương pháp để rút ra đẳng thức :
\(C_{50}^9C_9^4=C_{50}^4.C_{46}^5\)
b) Chứng minh công thức Niutơn :
\(C_n^r.C_r^k=C_n^k.C_{n-k}^{r-k}\) \(\left(n\ge r\ge k\ge0\right)\)
c) Tìm chữ số ở hàng đơn vị của tổng :
\(S=0!+2!+4!+6!+....+100!\)
Chứng minh rằng nếu n là số nguyên tố thì với \(r=1,2,n,.....n-1\), ta có \(C_n^r\) chia hết cho \(n\)
Chứng minh: \(\frac{n+1}{n+2}\left(\frac{1}{C_{n+1}^k}+\frac{1}{C_{n+1}^{k+1}}\right)=\frac{1}{C_n^k}\)
Chứng minh rằng
\(C_n^m=C_{n-1}^{m-1}+C_{n-2}^{m-2}+...+C_{m-1}^{m-1}\)
Chứng minh rằng với \(1\le k< n\) :
\(C_{n+1}^{k+1}=C_n^k+C^k_{n-1}+....+C^k_{k+1}+C^k_k\)