Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Anh

Cho biểu thức:
Q= \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}\) - \(\frac{\sqrt{x}+3}{\sqrt{x}-2}\) - \(\frac{2\sqrt{x}+1}{3-\sqrt{x}}\) với x≥0 ; x≠4 ; x≠9
a) Rút gọn biểu thức Q
b) Tìm x để Q<1
c) Tìm x∈Z để Q nhận được giá trị nguyên
Mình cần gấp,mn giải chi tiết giúp mình phần a nhé!!!

Lê Thị Thục Hiền
22 tháng 8 2019 lúc 15:08

a, Q=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)

=\(\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

=\(\frac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}-\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

= \(\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

=\(\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

=\(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x-2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, Để Q<1 <=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\)

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}-3}-1< 0\) <=> \(\frac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\) <=> \(\frac{4}{\sqrt{x}-3}< 0\)

<=> \(\sqrt{x}-3< 0\) <=> \(\sqrt{x}< 3\) <=> x<9. Kết hợp vs đk => \(0\le x< 9\)\(x\ne2\)

Vậy Q<1 <=> \(0\le x< 9\)\(x\ne2\)

c, Có \(Q=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để Q\(\in Z\) <=> \(\frac{4}{\sqrt{x}-3}\in Z\)

Vs \(x\in Z\) => \(\left\{{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\notin Z\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\sqrt{x}-3\in Z\\\sqrt{x}-3\notin Z\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{4}{\sqrt{x}-3}\in Z\left(tm\right)\\\frac{4}{\sqrt{x}-3}\notin Z\left(ktm\right)\end{matrix}\right.\)

=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)

<=> \(\sqrt{x}\in\left\{4,2,1,5,-1,7\right\}\)

\(\sqrt{x}\ge0,\sqrt{x}\ne2\)

=> \(\sqrt{x}\in\left\{1,4,5,7\right\}\)

<=> x\(\in\left\{1,16,25,49\right\}\)

Vậy x\(\in\left\{1,16,25,49\right\}\) thì Q\(\in Z\)


Các câu hỏi tương tự
Nguyễn Thị Ngọc Hân
Xem chi tiết
Hoàng Minh
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Vũ THị Ánh Tuyết
Xem chi tiết
Minh Thảo
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết