Chứng minh rằng nếu giá trị của biểu thức f(x)=ax^2+bx+c chia hết cho 2011 với mọi x thuộc Z(a,b,c,d thuộc Z) thì các hệ số a,b,c đều chia hết cho 2011
Cho biểu thức: \(P\left(x\right)=x^3+\text{ax}+b\). Biết rằng P(0) và P(1) đều chia hết cho 3. Chứng tỏ rằng P(x) có giá trị là bội của 3 với mọi giá trị nguyên của x
Cho biểu thức: \(P\left(x\right)=x^3+\text{ax}+b\).Biết rằng P(0) và P(1) đều chia hết cho 3. Chứng tỏ rằng P(x) có giá trị là bội của 3 với mọi giá trị nguyên của x
Cho đa thức f(x)=ax^2+bx+c (a,b,c nguyên ) .
CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a,b,c đều chia hết cho 3 .
cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(x) ⋮ 7 với mọi giá trị x nguyên. Chứng minh rằng các hệ số của đa thức trên đều chia hết cho 7
Cho đa thức P(x) = ax3 + bx2 + cx + d có các hệ số a, b, c, d nguyên.
Biết P(x) chia hết cho 5 với mọi số nguyên x. Chứng minh: a; b; c; d chia hết cho 5
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
Bài 3 (2điểm) a/ Tìm nghiệm của đa thức 7x^2 - 35x + 42
b/ Đa thức f(x) = ax^2 + bx + c có a, b, c là các số nguyên , và
a khác 0. Biết với mọi giá trị nguyên của x thì f(x) chia hết cho 7.
Chứng minh a, b, c cũng chia hết cho 7
Cho đa thức: \(F\left(x\right)=ax^3+bx^2+cx+d\) với a,b,c là các số nguyên. Biết rằng với mọi giá trị nguyên của x thì giá trị của đa thức đều chia hết cho 5. Chứng minh a,b,c,d đều chia hết cho 5