1) ĐKXĐ : \(\left\{{}\begin{matrix}x^3-1\ne0\\x^3+x\ne0\\x^2+x\ne0\\3x+\left(x-1\right)^2\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x-1\ne0\\x\left(x^2+1\right)\ne0\\x\left(x+1\right)\ne0\\x^2+x+1\ne0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x-1\ne0\\x\ne0\\x+1\ne0\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne0\\x\ne-1\\\left(x+\frac{1}{2}\right)^2\ne-\frac{3}{4}\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne\pm1\\x\ne0\end{matrix}\right.\)
2) Ta có : \(P=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{x^2-2x+1}{3x+x^2-2x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{\left(x-1\right)^2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x^2+x}{x^3+x}\)
=> \(P=\left(\frac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
=> \(P=\left(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x+1}{x^2+1}\)
=> \(P=\left(\frac{\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right):\frac{x+1}{x^2+1}\)
=> \(P=1:\frac{x+1}{x^2+1}=\frac{x^2+1}{x+1}\)
- Thay P = 0 vào phương trình trên ta được :\(\frac{x^2+1}{x+1}=0\)
=> \(x^2+1=0\)
=> \(x^2=-1\) ( Vô lý )
Vậy phương trình vô nghiệm .
3) Ta có : \(\left|P\right|=1\)
=> \(\left|\frac{x^2+1}{x+1}\right|=1\)
=> \(\frac{x^2+1}{\left|x+1\right|}=1\)
=> \(\left|x+1\right|=x^2+1\)
TH1 : \(x+1\ge0\left(x\ge-1\right)\)
=> \(x+1=x^2+1\)
=> \(x^2=x\)
=> \(x=1\) ( TM )
TH2 : \(x+1< 0\left(x< -1\right)\)
=> \(-x-1=x^2+1\)
=> \(x^2+1+1+x=0\)
=> \(x^2+\frac{1}{2}x.2+\frac{1}{4}+\frac{7}{4}=0\)
=> \(\left(x+\frac{1}{2}\right)^2=-\frac{7}{4}\) ( Vô lý )
Vậy giá trị của x thỏa mãn là x = 1 .