a.
P được xác định khi \(\left[{}\begin{matrix}2x+3=0\\2x-3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
vậy ĐKXĐ là: \(x\ne\pm\dfrac{3}{2}\)
b.
\(P=\dfrac{2}{2x+3}+\dfrac{3}{2x-3}-\dfrac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\\ P=\dfrac{2\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\dfrac{3\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)}-\dfrac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(P=\dfrac{2\left(2x-3\right)+3\left(2x+3\right)-6x-5}{\left(2x+3\right)\left(2x-3\right)}\\ P=\dfrac{4x-6+6x+9-6x-5}{\left(2x+3\right)\left(2x-3\right)}=\dfrac{4x-2}{\left(2x+3\right)\left(2x-3\right)}\)
c.
theo đề bài, ta có:
\(\dfrac{4x-2}{\left(2x+3\right)\left(2x-3\right)}=4\\ \Leftrightarrow4x-2=4\left(2x+3\right)\left(2x-3\right)\)
\(\Leftrightarrow4x-2=4\left(4x^2-6x+6x-9\right)\\ \Leftrightarrow2x-1=8x^2-18\)
\(\Leftrightarrow8x^2-2x-17=0\\ \Leftrightarrow x^2-\dfrac{1}{4}x=\dfrac{17}{8}\)
\(\Leftrightarrow x^2-2.\dfrac{1}{8}+\dfrac{1}{64}=\dfrac{17}{8}+\dfrac{1}{64}\\ \Leftrightarrow\left(x-\dfrac{1}{8}\right)^2=\dfrac{137}{64}\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{8}=\dfrac{\sqrt{137}}{8}\\x-\dfrac{1}{8}=-\dfrac{\sqrt{137}}{8}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{137}+1}{8}\\x=\dfrac{1-\sqrt{137}}{8}\end{matrix}\right.\)
vậy P=4 khi \(x=\dfrac{\sqrt{137}+1}{8}\) và \(x=\dfrac{1-\sqrt{137}}{8}\)
\(P=\dfrac{2}{2x+3}+\dfrac{3}{2x-3}-\dfrac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
ĐKXĐ \(2x+3\ne0\) và \(2x-3\ne0\)
Suy ra \(x\ne\dfrac{-3}{2}\) và \(x\ne\dfrac{3}{2}\)
MC: (2x+3)(2x-3)
\(\dfrac{2.\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}+\dfrac{3.\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)}-\dfrac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\dfrac{4x-6}{\left(2x+3\right)\left(2x-3\right)}+\dfrac{6x+9}{\left(2x+3\right)\left(2x-3\right)}\dfrac{6x+5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\dfrac{4x-6}{\left(2x+3\right)\left(2x-3\right)}\)