a)\(N=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
\(=\) \(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}+\frac{\sqrt{x+2}}{\left(\sqrt{x-2}\right)\left(\sqrt{x+2}\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x-2}\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
Thay x= 25 vào biểu thức N, ta được: \(N=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)
b) Để \(N=\frac{-1}{3}\) thì:
\(\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{-1}{3}\)
\(\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\)
\(\Leftrightarrow3\sqrt{x}+\sqrt{x}=2\)
\(\Leftrightarrow4\sqrt{x}=2\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)
\(\Rightarrow x=\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)