\(M=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b/ \(x=11-6\sqrt{2}=\left(3-\sqrt{2}\right)^2\Rightarrow\sqrt{x}=3-\sqrt{2}\)
\(\Rightarrow M=\frac{3-\sqrt{2}+1}{3-\sqrt{2}-3}=1-2\sqrt{2}\)
c/ \(M=2\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}=2\Leftrightarrow\sqrt{x}+1=2\sqrt{x}-6\)
\(\Leftrightarrow\sqrt{x}=7\Rightarrow x=49\)
d/ \(M< 1\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\Leftrightarrow\frac{\sqrt{x}-3+4}{\sqrt{x}-3}< 1\Leftrightarrow1+\frac{4}{\sqrt{x}+3}< 1\)
\(\Leftrightarrow\frac{4}{\sqrt{x}+3}< 0\) \(\Rightarrow\) không tồn tại m thỏa mãn
e/ \(M=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để M nguyên \(\Leftrightarrow\frac{4}{\sqrt{x}-3}\) nguyên
\(\Rightarrow4⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3=Ư\left(4\right)=\left\{-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{x}=\left\{1;2;4;5;7\right\}\)
\(\Rightarrow x=\left\{1;4;16;25;49\right\}\)
Kết hợp ĐKXĐ ban đầu ta được \(x=\left\{1;16;25;49\right\}\)