\(A=\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\frac{x-\sqrt{x}+1}{\sqrt{x}-1}-\left(\sqrt{x}-1\right)\)
\(=\frac{x-\sqrt{x}+1-\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\frac{\sqrt{x}}{\sqrt{x}-1}\)
\(x=2016+2\sqrt{2015}=\left(\sqrt{2015}+1\right)^2\)
\(\Rightarrow A=\frac{\sqrt{2015}+1}{\sqrt{2015}}=\frac{2015+\sqrt{2015}}{2015}\)