\(a,B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\left(x\ge0;x\ne1\right)\\ B=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ B=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)
b: Ta có: \(B=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}+\dfrac{5}{\sqrt{x}-1}+\dfrac{4}{x-1}\)
\(=\dfrac{x+2\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+6}{\sqrt{x}-1}\)
\(b,C=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}+6}{\sqrt{x}-1}+\dfrac{x-5}{\sqrt{x}-5}\right)\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}}\\ =\dfrac{\sqrt{x}+6+x-5}{\sqrt{x}-5}\cdot\dfrac{\sqrt{x}-5}{\sqrt{x}}\\ =\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}+1\ge2\sqrt{\sqrt{x}\cdot\dfrac{1}{\sqrt{x}}}+1=2\cdot1+1=3\left(BĐT.cosi\right)\)
Dấu \("="\Leftrightarrow x=1\left(ktm\right)\) nên dấu \("="\) không xảy ra