Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Rimuru Tempest

Cho bất phương trình: (x+2m)(x+1)>0. Tìm m để tập nghiệm của bất phương trình chứa (1;+∞)

Nguyễn Việt Lâm
23 tháng 7 2021 lúc 16:18

- Với \(m=\dfrac{1}{2}\Rightarrow\left(x+1\right)^2>0\) có tập nghiệm \(R\backslash\left\{-1\right\}\) thỏa mãn

- Với \(m>\dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-1\\x< -2m\end{matrix}\right.\) hay \(D=\left(-\infty;-2m\right)\cup\left(-1;+\infty\right)\)

Thỏa mãn do \(\left(1;+\infty\right)\subset\left(-1;+\infty\right)\)

- Với \(m< \dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-2m\\x< -1\end{matrix}\right.\) hay \(D=\left(-\infty;-1\right)\cup\left(-2m;+\infty\right)\)

Tập nghiệm của BPT chứa \(\left(1;+\infty\right)\) khi:

\(-2m\le1\Rightarrow m\ge-\dfrac{1}{2}\Rightarrow-\dfrac{1}{2}\le m< \dfrac{1}{2}\)

Kết hợp lại ta được: \(m\ge-\dfrac{1}{2}\)


Các câu hỏi tương tự
Rimuru Tempest
Xem chi tiết
chi nguyễn khánh
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Hoàng
Xem chi tiết
Uyên Nhi
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Ánh Dương
Xem chi tiết
Quyên Dũng
Xem chi tiết