Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho 3 số hữu tỉ a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\). CM: \(A=\sqrt{a^2+b^2+c^2}\) là số hữu tỉ
Cho a,b,c là ba số hữu tỉ thỏa mãn abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Chứng minh rằng ít nhất một trong ba số a,b,c là bình phương của một số hữu tỉ
Cho 3 số a, b, c không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng: \(\dfrac{\sqrt{a}}{1+a}+\dfrac{\sqrt{b}}{1+a+b}+\dfrac{\sqrt{c}}{1+a+b+c}\le2\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho x, y, z là các số hữu tỉ thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}\)
Chứng minh rằng \(\sqrt{x^2+y^2+z^2}\) là số hữu tỉ
Các idol dô đây lẹ
Cho a.b,c là số hữu tỉ t/m abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\).
C/m ít nhẩ một trong 3 số a,b,c là bình phương của một số hữu tỉ.
Cho a, b, c là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR: \(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ba}\le\dfrac{a+b+c}{4}\)
Cho a, b, c là các số dương thỏa mãn: \(a^2+2b^2\le3c^2\). Chứng minh: \(\dfrac{1}{a}+\dfrac{2}{b}\ge\dfrac{3}{c}\)