Nhìn qua đã biết là đề sai rồi bạn
Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay
Nhìn qua đã biết là đề sai rồi bạn
Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay
Chứng minh rằng: \(\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{1}{2}\) với a, b là các số dương
Cho a , b , c > 0 . Chứng minh rằng
\(\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\)
Cho a,b,c là 3 số dương có tích là 1. Chứng minh rằng:
\(\dfrac{\left(bc-a^2\right)\left(b-c\right)^2}{\left(a^2+c^2\right)\left(a^2+b^2\right)}+\dfrac{\left(ac-b^2\right)\left(c-a\right)^2}{\left(b^2+a^2\right)\left(b^2+c^2\right)}+\dfrac{\left(ab-c^2\right)\left(a-b\right)^2}{\left(c^2+a^2\right)\left(c^2+b^2\right)}+6\ge\dfrac{18}{a^2+b^2+c^2}\)
@Akai Haruma @Hung nguyen @Ace Legona @Phương An :v Tag mãi mà không được, ai ngang qua hộ đêy
Các bạn giúp mình với!
1. GIả sử a,b,c là ba số khác nhau và \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\). Chứng minh rằng \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
2. Giả sử a,b,c là ba số khác nhau và khác 0 thỏa mãn điều kiện a+b+c=0. Chứng minh rằng:\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)=9\)
BT1: Cho a,b,c>0. CMR: \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2>33\)
BT2: Cho a,b,c là các số thực. CMR:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{6}+\dfrac{\left(c-a\right)^2}{2009}\)
Mk đang cần gấp. Giúp mk với!!!
cho a,b,c là các số dương thỏa mãn: a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
chứng minh rằng: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho ba số dương a,b,c.Chứng minh rằng:\(\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\)
Cho a,b,c là các số thực dương. CMR:
\(\dfrac{b\left(2a-b\right)}{a\left(b+c\right)}+\dfrac{c\left(2b-c\right)}{b\left(c+a\right)}+\dfrac{a\left(2c-a\right)}{c\left(a+b\right)}\le\dfrac{3}{2}\)
cho a,b,c là các số thực dương.cmr
\(\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(b+c\right)\left(b+a\right)}+\dfrac{ab}{\left(c+a\right)\left(c+b\right)}\ge\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)}\)