\(S^3=\left(\sqrt[3]{7+4\sqrt{3}+}\sqrt[3]{7-4\sqrt{3}}\right)^3\)
= \(7+4\sqrt{3}+7-4\sqrt{3}+3.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}.\left(a+b\right)\)
= 14+\(3.\sqrt{49-48}.S\)
= 14+3S
=> S3-3S=14+3S-3S=14
\(P=S^3-3S\)
\(P=\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)^3-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=7+4\sqrt{3}+3\left(\sqrt[3]{7+4\sqrt{3}}\right)^2.\sqrt[3]{7-4\sqrt{3}}+3.\sqrt[3]{7+4\sqrt{3}}\left(\sqrt[3]{7-4\sqrt{3}}\right)^2+7-4\sqrt{3}\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{7+4\sqrt{3}}.\sqrt[3]{7-4\sqrt{3}}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\sqrt[3]{49-48}\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14+3\text{}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{}\text{}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)
\(P=14\)