\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{2016}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2016}}\)
\(2A=2+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\)
\(2A-A=2+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{2015}}-\frac{1}{2}-\frac{1}{2^2}-..-\frac{1}{2^{2016}}\)
\(A=2-\frac{1}{2^{2016}}\)
\(A=\frac{2^{2009}}{2^{2010}}-\frac{1}{2^{2010}}=\frac{2^{2009}-1}{2^{2010}}\)
\(\Rightarrow A< 1\)