\(\left\{{}\begin{matrix}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{b}{c}=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow P=1+1+1=3\)
\(\left\{{}\begin{matrix}ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\\ab=c^2\Rightarrow\frac{b}{c}=\frac{c}{a}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow P=1+1+1=3\)
ba số a,b,c,khác 0 và a+b+c\(\ne\)0,thỏa mãn điều kiện \(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
tính giá trị của biểu thức \(P=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
cho các số a,b,c thỏa mãn : 3/a+b=2/b+c=1/c+a(gt các tỉ số đều có nghĩa)
Tính giá trị biểu thức : M=2a+3b+2020c/3a+2b-2021c
Cho a, b là các số hữu tỉ khác 0, thỏa mãn điều kiện \(\dfrac{a}{b}=ab=a+b\). Tính giá trị của biểu thức T = a2 + b2 .
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
Tìm giá trị nhỏ nhất , giá trị lớn nhất của các biểu thức sau: a, A=1,7+|3,4-x| b,B=|x-2,8|-3,5 c,C=0,5-|x-3,5|
a, cho a, b là 2 số thoả mãn |a-2b+3|\(^{2023}\) + (b-1)\(^{2024}\) = 0. Tính giá trị biểu thức
P = a\(^{2023}\) x b\(^{2024}\) + 2024
b, 3 số hữu tỉ x,y,z thoả mãn xy+yz+zx = 2023. Chứng tỏ rằng:
A = \(\dfrac{\left(x^2+2023\right)x\left(y^2+2023\right)x\left(z^2+2023\right)}{16}\) viết được dưới dạng bình phương của 1 số hữu tỉ
tìm các số nguyên x để biểu thức sau có giá trị nguyên
a, A = \(\dfrac{7}{\sqrt{x}}\)
b, B = \(\dfrac{3}{\sqrt{x-1}}\)
c, C = \(\dfrac{2}{\sqrt{x-3}}\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{b}{a}\)
và a+b+c+d=0. Tính giá trị biểu thức sau :
\(\dfrac{2a-b}{c+d}+\dfrac{2b-c}{d+a}+\dfrac{2c-d}{a+b}+\dfrac{2d-a}{b+c}\)