\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=2\)
\(\Rightarrow P=2+2+2=6\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{a+b}{c}=2\)
\(\Rightarrow P=2+2+2=6\)
Câu 1 .Cho A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}.\) Tính số nguyên x để A có giá trị là một số nguyên.
Câu 2.Ba số a,b,c khác 0 và a+b+c \(\ne\) 0, thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}.\)
Tính giá trị của biểu thứ P = \(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
ai hiểu giải hộ mk nha !!!
Cho 3 số hữu tỉ dương a;b;c thỏa mãn: \(\dfrac{a+b-2c}{c}=\dfrac{b+c-2a}{a}=\dfrac{c+a-2b}{b}\)
Tính giá trị biểu thức: P = \(\left(1+\dfrac{a}{b}\right)\left(2+\dfrac{b^2}{c^2}\right)\left(3+\dfrac{c^3}{a^3}\right)\)
Cho hai phân số \(\dfrac{a}{b}\) và \(\dfrac{c}{d}\) thỏa mãn b, d > 0 và \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
cho a;b;c;d là các số thực khác 0 thỏa mãn
\(\dfrac{a-b+c+d}{b}=\dfrac{a+b-c+d}{c}=\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}\)
tính giá trị của biểu thức
\(M=\dfrac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}\)
Cho a,b,c là ba số thực \(\left(a,b,c\ne0\right)\)thỏa mãn điều kiện \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính \(P=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{b}{a}\)
và a+b+c+d=0. Tính giá trị biểu thức sau :
\(\dfrac{2a-b}{c+d}+\dfrac{2b-c}{d+a}+\dfrac{2c-d}{a+b}+\dfrac{2d-a}{b+c}\)
Cho a, b, c là 3 số thực dương thỏa mãn \(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Tính giá trị của biểu thức M = \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
Cho a, b, c la các số nguyên \(\ne\)0 sao cho: \(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\)
Tìm giá trị bằng số của một biểu thức M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
GIẢI KĨ GIÚP MÌNH NHA MÌNH SẮP THI RÙI
Cho a, b là các số hữu tỉ khác 0, thỏa mãn điều kiện \(\dfrac{a}{b}=ab=a+b\). Tính giá trị của biểu thức T = a2 + b2 .