Giải:
Ta có:
\(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) \(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\) (Vì \(n>0\))
Vậy \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\Leftrightarrow a< b\)
Tương tự ta cũng có:
\(\dfrac{a}{b}>\dfrac{a+n}{b+n}\Leftrightarrow a>b\)
\(\dfrac{a}{b}=\dfrac{a+n}{b+n}\Leftrightarrow a=b\)