Cho \(a,b\in N\) và \(\left(a-b\right)\left(2a+2b+1\right)=b\)
a) Chứng minh \(2a+2b+1\) là số chính phương
b) Chứng minh phân số \(\frac{a-b}{2a+2b+1}\) tối giản
Cho a,b,c là độ dài của 3 cạnh của 1 tam giác
Chứng minh : \(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4>0\)
Cho (a - b)^2 + (b - c)^2 + (c - a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2. Chứng minh rằng: a=b=c
Nếu \(\frac{1}{a}-\frac{1}{b}=1\) (a,b khác 0 và 2a+3ab-2b khác 0)
Tính Q=\(\frac{a-2ab-b}{2a+3ab-2b}\)
Chứng minh:
a. (a - 1)(a - 2) + (a - 3)(a + 4) - 2(2a2 + 5a - 34) = -7a + 24
b. (a +c)(a - c) - b(2a - b) - (a - b + c)(a - b - c) = 0
c. (a -b)(a2 + ab + b2) - (a +b)(a2 - ab + b2) = -2b3
a) Biết 2a , b - 1 , c - 2 TL với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
b) Biết 2a , b - 1 , c - 2 TLN với 3 , 4, 5 và a - 2b + c = 1. Tính a , b , c
Cho a^2 + b^2 + c^2 = m. Tính giá trị của biểu thức sau theo m:
A= ( 2a + 2b - c)^2 + ( 2b + 2c - a)^2 + ( 2c + 2a - b)^2
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh :
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{-2a+7c}{-2b+7d}\)
Câu 1:Cho dãy tỉ số:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\).
Tính: M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2:S= abc+bca+cab (abc, bca, cab là các số hạng)
Chứng minh: S không phải là số chính phương.
Câu 3: Cho 9 đường thẳng trong đó không có 2 đường thẳng nào song song. CMR: Ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20o.
Help me- Mai mình nộp rồi!