Ta có: (a-b)2+(b-c)2+(c-a)2=(a+b-2c)2+(b+c-2a)2+(c+a-2b)2=(a-c+b-c)2+(b-a+c-a)2 +(c-b+a-b)2.
Đặt a-b=x; b-c=y; c-a=z thì ta có:x+y+z=0,→ x2+y2+z2=(y-z)2+(z-x)2+(x-y)2=2(x2 +y2 +z2)-2(yz+xz+yx)
→x2 +y2 +z2+2(xy+yz+xz)=2(x2 +y2 +z2)
hay(x+y+z)2=2(x2 +y2 +z2). Mà x+y+z=0 nên→ x2+y2+z2=0,
→(a-b)2+(b-c)2 +(c-a)2=0↔a-b=b-c=c-a=0→a=b=c(đpcm)