Lời giải:
Áp dụng BDDT AM-GM ta có:
\(a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}\)
\(\Rightarrow 3(a^3+2b^3)\geq 9ab^2\)
Vì \(b\geq 0\Rightarrow b^3\geq 0\Rightarrow b^3+3(a^3+2b^3)\ge 3(a^3+2b^3)\geq 9ab^2\)
hay \(3a^3+7b^3\geq 9ab^2\) (đpcm)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} a^3=b^3\\ b^3=0\end{matrix}\right.\Leftrightarrow a=b=0\)