Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Đình Quân

Cho a,b,c,d>0 Chứng minh

\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)

Nguyễn Hoàng
19 tháng 2 2020 lúc 23:17

+ \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\) (1)

+ Ta c/m : Nếu \(\frac{m}{n}< 1\) thì \(\frac{m}{n}< \frac{m+x}{n+x}\)

+ Ta có : \(\frac{m}{n}< 1\Leftrightarrow m< n\Leftrightarrow mx< nx\) ( m,n,x > 0 )

\(\Leftrightarrow mn+mx< mn+nx\Leftrightarrow m\left(n+x\right)< n\left(m+x\right)\) \(\Leftrightarrow\frac{m}{n}< \frac{m+x}{n+x}\)

Áp dụng kết quả trên :

\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{a+b+c+d}\) \(=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\) (2)

+ Từ (1) và (2) => đpcm

Khách vãng lai đã xóa

Các câu hỏi tương tự
Văn Thắng Hồ
Xem chi tiết
Nano Thịnh
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Toán Chuyên Học
Xem chi tiết
phương oanh
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Nguyễn Thu Diệp
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Phạm Băng Băng
Xem chi tiết