Cho các số thực a, b, c, d thỏa mãn a > 1, b > 1, c > 1, d > 1. Chứng minh
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{d-1}+\frac{d^2}{a-1}\ge16\)
Cho các số dương a,b,c,d,e. Chứng minh bất đẳng thức:
\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\ge\frac{5}{2}\)
b1 dùng bđt cô-si cho a,b,c,d là số dương cmr
a)\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge\frac{a+b+c}{2}\)
b)\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{a+d}\ge\frac{a+b+c+d}{2}\)
c)\(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{d}{a+b+c}}>2\)
d)\(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)
b2
a)cho x,y<0 CMR\(\frac{1}{x^2+y^2}\)+\(\frac{1}{xy}\ge6\)
b)cho 0\(\le\)x\(\le\)2CMR\(\left(2x-x^2\right)\left(y-2y^2\right)\le\frac{1}{8}\)
cacs bn giải giùm mk cái mai mk phai nộp r thanks các bn nhìu
cho a,b,c,d >0 . CMR :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho a,b,c,d>0 Chứng minh
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho các số dương a,b,c,d,e. Chứng minh rằng: \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+e}+\frac{d}{e+a}+\frac{e}{a+b}\ge\frac{5}{2}\)
cho các số dương a,b,c,cd thỏa mãn điều kiện: a + b + c = 3. C/m
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
tìm GTNN của bt;
B=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\) và a+b+c+d=1; a,b,c,d là số dương
1) cho a,b,c,d > 0. C/m: \(\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}>2\)