Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Thị Nhung

Cho a,b,c,d là các số nguyên dương. Tìm giá trị nhỏ nhất của biểu thức:

A= |x-a| + |x-b| + |x-c| + |x-d|

Nguyen Thi Huyen
28 tháng 2 2019 lúc 22:37

Ta có:

\(\left|x-a\right|\ge0\) với mọi \(x,a\)

\(\left|x-b\right|\ge0\) với mọi \(x,b\)
\(\left|x-c\right|\ge0\) với mọi \(x,c\)

\(\left|x-d\right|\ge0\) với mọi \(x,d\)

\(\Rightarrow\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge0\) với mọi \(x,a,b,c,d\)
\(\Rightarrow A\ge0\)

Dấu "\(=\)" xảy ra khi \(\left\{{}\begin{matrix}\left|x-a\right|=0\\\left|x-b\right|=0\\\left|x-c\right|=0\\\left|x-d\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-a=0\\x-b=0\\x-c=0\\x-d=0\end{matrix}\right.\)\(\Rightarrow a=b=c=d=x\)

Vậy \(MinA=0\) khi \(a=b=c=d=x.\)


Các câu hỏi tương tự
Nguyễn Lâm Nguyên
Xem chi tiết
Vũ Ngọc Thảo Nguyên
Xem chi tiết
Nam Khánh 2k
Xem chi tiết
Nam Khánh 2k
Xem chi tiết
dream XD
Xem chi tiết
dream XD
Xem chi tiết
Tạ Phương Anh
Xem chi tiết
linh angela nguyễn
Xem chi tiết
Trần Thị Bích Ngọc
Xem chi tiết