Ta có:
\(\left|x-a\right|\ge0\) với mọi \(x,a\)
\(\left|x-b\right|\ge0\) với mọi \(x,b\)
\(\left|x-c\right|\ge0\) với mọi \(x,c\)
\(\left|x-d\right|\ge0\) với mọi \(x,d\)
\(\Rightarrow\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge0\) với mọi \(x,a,b,c,d\)
\(\Rightarrow A\ge0\)
Dấu "\(=\)" xảy ra khi \(\left\{{}\begin{matrix}\left|x-a\right|=0\\\left|x-b\right|=0\\\left|x-c\right|=0\\\left|x-d\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-a=0\\x-b=0\\x-c=0\\x-d=0\end{matrix}\right.\)\(\Rightarrow a=b=c=d=x\)
Vậy \(MinA=0\) khi \(a=b=c=d=x.\)