a) cho phương trình x2+ax+b+1=0 có 2 nghiệm nguyên dương .CMR a2+b2 là một hợp số
b) cho 3 phương trình ax2+2bx+c=0(1);bx2+2cx+a=0(2);cx2+2ax+b=0(3) với a,b,c khác 0 .CMR ít nhất một trong 3 phương trình trên đây có nghiệm
1. cho pt x2-2(m-2)x-2m=0 với x là ẩn số giá trị của m để pt có 2 nghiệm là 2 số đối nhau là
a,0 b, \(\dfrac{-1}{2}\) c, 2 d, 4
2. biết rằng (x0; y0)là nghiệm của hệ pt \(\left\{{}\begin{matrix}x+2y-3=0\\2x-y-1=0\end{matrix}\right.\) tổng x0 + y0 bằng
a,3 b,1 c,0 d, 2
3. trong △ABC vuông tại A có AC=3; AB=4 khi đó tanB bằng
a,\(\dfrac{4}{5}\) b,\(\dfrac{3}{5}\) c,\(\dfrac{3}{4}\) d \(\dfrac{4}{3}\)
4. trên đg tròn (O;R) lấy 2 điểm A,B sao cho số đo cung AB lớn hơn bằng \(270^o\) độ dài dây cung là
a, R\(\sqrt{2}\) b, R\(\sqrt{3}\) c, R d, 2R\(\sqrt{2}\)
5. cho đg tròn (O;3cm) 2 điểm A,B thuộc đường tròn và sđ \(\stackrel\frown{AB}\) = \(60^o\) độ dài cung nhỏ AB là
a, \(\dfrac{\pi}{2}\) cm b, \(3\pi\) c, \(\dfrac{\pi}{3}cm\) d, \(\pi\)cm
6. giá trị của m để 2 đg thẳng (d): y=xm+6 và (d'): y=3x+2-m song song là
a, m=-2 b, m=-3 c, m=-4 d, m=1
7. cho hàm số bậc nhất y=ax+b có hệ số góc bằng -1 và tung độ góc bằng 3 giá trị của biểu thức a2+b bằng
a,2 b, 4 c, 9 d, 5
8. cho hệ pt \(\left\{{}\begin{matrix}3x+my=1\\nx+y=3\end{matrix}\right.\) với m,n là tham số biết rằng (x;y)=(1,1) là 1 nghiệm của hệ đã cho giá trị của m+n bằng
a, -1 b, 3 c, 1 d, 2
9.cho Parabol (P) có pt \(y=\dfrac{x^2}{4}\) vào đường thẳng (d): y=-2x-4
a, (P) cắt (d) tại 2 điểm phân biệt
b, (P) cắt (d) tại điểm duy nhất (-2;2)
c, (P) ko cắt (d)
d, (P) tiếp xúc với (d), tiếp điểm là (-4;4)
10. tất cả các giá trị của x để \(\sqrt{-2x+6}\) có nghĩa là
a, x≥3 b, x>3 c, x≤3 d, x<-3
Chứng minh rằng phương trình \(\left(ax^2+2bx+c\right)\left(bx^2+2cx+a\right)\left(cx^2+2ax+b\right)=0\) luôn có nghiệm với mọi số thực a,b,c
2. Tìm giá trị của m để phương trình sau có 2 nghiệm cùng dấu. Khi đó 2 nghiệm mang dấu gì ? a) x - 2mx + 5m - 4= 0 (1) b) ma + mr +3 0 (2)
3. Cho phương trình: (m + 1)x2 + 2(m + 4)x + m+1 = 0 Tìm m để phương trình có: a) Một nghiệm b) Hai nghiệm phân biệt cùng dấu c) Hai nghiệm âm phân biệt
4. Cho phương trình (m - 4)x2 – 2(m- 2)x + m-1 = 0 Tìm m để phương trình a) Có hai nghiệm trái dấu và nghiệm âm có GTTÐ lớn hơn b) Có 2 nghiệm trái dấu và bằng nhau về GTTÐ c) Có 2 nghiệm trái dấu d) Có nghiệm kép dương. e) Có một nghiệm bằng 0 và một nghiệm dương.
Cho a , b, c là độ dài 3 cạnh tam giác CMR: phương trình b2 x2 +(m2+c - a2) x+c2=0 vô nghiệm
Bài 1: Với mọi số x, y. Chứng minh rằng:
a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3}
\)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)
Bài 2: Với mọi số thực x, a. Chứng minh rằng:
\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)
Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng:
a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)
Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:
\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)
Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?
Bài 6: Cho a>0. Chứng minh rằng:
\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)
Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.
Bài 8: Cho \(0\le x, \) \(y\le1 \)và \(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)
Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)
Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)
Cho các số thực dương a,b,c và a = \(max\left\{a;b;c\right\}\).
Biết phương trình \(a^2x^2+\left(a^2+c^2-b^2\right)x+c^2=0\) có nghiệm
CMR a,b,c không thể là độ dài 3 cạnh của một tam giác
CMR nếu a, b, c là những số khác 0 thì trong 3 phương trình sau phải có ít nhất 1 phương trình có nghiệm:
\(ãx^2+2bx+c=0\left(1\right)\)
\(bx^2+2cx+a=0\left(2\right)\)
\(cx^2+2ax+b=0\left(3\right)\)
cho phương trình: x2+2x+m=0. Tìm m để :
a) có 2 nghiệm trái dấu
b) có 2 nghiệm dương
c) có 2 nghiệm âm
d) có 2 nghiệm đối nhau
e) có 2 nghiệm trong đó có 1 nghiệm lớn hơn 1