1.a)CMR từ tỉ lệ a/b=c/d (a khác b và -b,c khác d và -d) ta có tỉ lệ thức a+b/a-b = c+d/c-d.
b)CMR nếu có a+b/a-b = c+d/c-d (a,b,c,d khác 0) thì a/b=c/d.
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)và b, d khác 0. CMR \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
chờ (a^2+b^2)/(c^2+d^2)=(à.b)/(c.d) (với a;b;c;d ko bằng 0;c ko bằng d;-d)
CMR:a/b=c/d hoac a/b=d/c
Cho b^2=ac; c^2=bd với b,c,d khác 0; b+c khác d, b^3+c^3 khác d^3Chứng mỉnh rằng a/b=b/c=c/d và 3a^3-4b^3+5c^3/3b^3-4c^3+5d^3=a/d
giúp ;-;
Bài 1 Cho \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\left(b\ne0\right)\) CMR \(c=0\)
Bài 2 Cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}CMR\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
cho a/b=c/d khac 1 va c khac 0
CMR:
a)((a.b)/(c.d))^2=(a.b)/(c-d)
b)((a.b/c.d))^3=((a^3-b^3)/(a^3-d^3))
cho a/b = c/d (c ko bằng 3/5.d;-3/5.d)
CMR:(5a+3b)/(5c+3d)=(5a-3b)/(5c-3d)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\) với a;b;c;d khác 0 và c khác +- d
CMR: \(\dfrac{a}{b}=\dfrac{c}{d} \) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
CMR: Nếu a+b/c+d=b+c/d+a (Trong đó a+b+c+d khác 0) thì a=c