Sai đề \(\dfrac{d}{b}\) chứ ko ph \(\dfrac{b}{d}\)
Sai đề \(\dfrac{d}{b}\) chứ ko ph \(\dfrac{b}{d}\)
1. Cho a, b, c > 0. CM:
\(\dfrac{a^3+b^3}{2ab}+\dfrac{b^3+c^3}{2bc}+\dfrac{c^3+a^3}{2ac}\ge a+b+c\)
2. Cho a, b, c, d là các số dương. CM:
\(\dfrac{a-b}{b+c}+\dfrac{b-c}{c+d}+\dfrac{c-d}{a+d}+\dfrac{d-a}{a+b}\ge0\)
Cho a;b;c;d>0 thỏa mãn: a+b+c+d=4. Tìm min của:
\(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{d^2}}+\sqrt{d^2+\dfrac{1}{a^2}}\)
a, cho \(a>0\), \(b>0\) . CM : \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
b , cho 3 số a , b , c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=16\)
CM : \(\dfrac{1}{3a+2b+c}+\dfrac{1}{a+3b+2c}+\dfrac{1}{2a+b+3c}\le\dfrac{8}{3}\)
chứng minh rằng \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+d}+\dfrac{d^2}{d+a}>=\dfrac{1}{2}\)
Chứng minh rằng nếu: \(\dfrac{A}{a}=\dfrac{B}{b}=\dfrac{C}{c}=\dfrac{D}{d}\)(a,b,c,d,A,B,C,D>0) thì\(\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
Với a,b,c,d >0
Và \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\ge3\)
CMR: abcd \(\ge\) \(\dfrac{1}{81}\)
Cho ba số a, b, c khác 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). Hãy tính P = \(\dfrac{ac}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}\)
\(K=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a. Rút gọn K
b.Tìm x để K<1
Bài 2 : cho tam giác ABC vuông tại A có đường cao AH . Vẽ HD vuông góc với AB tại D , HE vuông góc với AC tại E
a,Biết AB =8 , AC= 10. Tính AH, HB ,HC
b, CM \(^{\dfrac{AD}{BD}=\dfrac{AH^2}{BH^2}}\)
c , CM \(AH^3\) = BD . CE. BC
Cho các số dương a, b, c, d. Biết \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}+\dfrac{1}{1+d}\ge3\).
Chứng minh rằng : abcd\(\le\dfrac{1}{81}\)