cho a,b,c là độ dài 3 cạnh tam giác thỏa mãn a+b+c=1. Chứng minh rằng
\(1< \dfrac{a}{\sqrt{a^2+c}}+\dfrac{b}{\sqrt{a+b^2}}+\dfrac{c}{\sqrt{c^2+b}}< 2\)
Cho \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\). Chứng minh rằng \(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)
cho ba số dương a,b,c .Chứng minh rằng \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(b+a\right)}\ge\dfrac{3}{2}\)
Cho a;b;c;d>0 thỏa mãn: a+b+c+d=4. Tìm min của:
\(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{d^2}}+\sqrt{d^2+\dfrac{1}{a^2}}\)
Cho a,b,c thỏa mãn: \(a^2+b^2+c^2=2\). Chứng minh rằng:\(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\)
Các bạn giúp mình với!
1. GIả sử a,b,c là ba số khác nhau và \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\). Chứng minh rằng \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
2. Giả sử a,b,c là ba số khác nhau và khác 0 thỏa mãn điều kiện a+b+c=0. Chứng minh rằng:\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)=9\)
Cho các số thực a, b, c > 0 thỏa mãn \(a^2+b^2+c^2=\dfrac{5}{3}\)
Chứng minh rằng : \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
Cho a , b , c > 0 . Chứng minh rằng
\(\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\)
Chứng minh rằng nếu: \(\dfrac{A}{a}=\dfrac{B}{b}=\dfrac{C}{c}=\dfrac{D}{d}\)(a,b,c,d,A,B,C,D>0) thì\(\sqrt{Aa}+\sqrt{Bb}+\sqrt{Cc}+\sqrt{Dd}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)