Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+3c}{a}=\dfrac{2bk+3dk}{bk}=\dfrac{2b+3d}{b}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+3c}{a}=\dfrac{2bk+3dk}{bk}=\dfrac{2b+3d}{b}\)
16 giờ trước (15:58)
Bài 1 Cho a/b=c/d
Chứng tỏ rằng
a) a/b=a+c/c+d
b)a-b/b=c-d/d
c)2a-3c/2b-3d=2a+3c/2b+3b
Bài 2 tìm a,b biết
a/b=11/13 ; ƯCLN(a,b)
giúp mình nha các bạn <3
Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \((a+c).((b-d)=(a-c).(b-d)\)
b, \((a+c).b=(b+d).a\)
c, \(a.(b-d)=b(a-c)\)
d, \((b+d).c=(a+c).d\)
e, \((b-d).c=(a-c).d\)
f, \((a+b).(c-d)=(a-b).(c+d)\)
g, \((2a+3c).(2b-3d)=(2a-3c).(2b+3d)\)
h, \((4a+3b).(4c-3d)=(4a-3b).((4c+3d)\)
i, \((2a+3b).(4c-5d)=(4a-5b).(2c+3d)\)
k, \((4a+5b).(7c-11d)=(7a-11b).(4c+5d)\)
Cho các số thực a, b, c thỏa mãn:
(2a + 2b + 2c)3 = 12 + (2a + b - c) 3+ (2b + c - a)3+ (2c + a - b) 3
Chứng minh rằng (a + 3b)(b + 3c)(c + 3a) = 4
Giúp mk nhanh vs ạ
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh
a, \(\frac{a}{b}=\frac{c}{d}=\frac{3a-3c}{5b-5d}=\frac{2b-3c}{2b-3d}\)
b, \(\frac{a+b}{c+a}=\frac{a-b}{c-d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
b, \(\dfrac{c}{a+c}=\dfrac{b}{b+d}\)
c, \(\dfrac{a+b}{a}=\dfrac{d}{c+d}\)
d, \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
e, \(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
f, \(\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{c^2+d^2}{c^2-d^2}\)
cho\(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a, \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)
b, \(\frac{2a^2-3ab+4b^2}{2b^2+5ab}=\frac{2c^2-3cd+4d^2}{2d^2+5cd}\)
Cho a+b+c+d khác 0 sao cho: \(\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{b+a+d}{c}=\dfrac{c+b+a}{d}\)
Hãy tính: M = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}-\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
tính M=3A-2B/C+D + 3B-2C/D+A + 3C-2D/A-B + 3D-2A/B+C
AI GIẢI CHI TIẾT BÀI NÀY GIÙM MÌNH VỚI
Chứng minh : \(\dfrac{a}{b}=\dfrac{c}{d}\) nếu biết :
a,\(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
b,\(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)
c,\(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
d,\(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
e,\(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)