Cho abc = 1. Tính giá trị của biểu thức:
Q = \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
Cho các số dương a, b, c thỏa mãn: \(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\) Tính giá trị biểu thức: \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}-\dfrac{ab}{c^2}\)
Cho A = \(\left(\dfrac{2x}{x-2}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A biết: \(\left|2x-1\right|=3\)
c) Tìm x để A > 0
d) Tìm x để \(B=\dfrac{2}{x+1}\)
Cho ba số a, b, c có tổng khác 0 thỏa mãn \(a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\). Tính giá trị của biểu thức \(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
Cho hai biểu thức:
A = \(\dfrac{x+6}{5-x}\) và B = \(\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}+\dfrac{x^2-8x-25}{2x^2-10x}\)
a) Tính giá trị biểu thức A với x thỏa mãn \(x^2+5x=0\)
b) Chứng minh: B = \(\dfrac{x-2}{x-5}\)
c) Tìm giá trị của x để \(B-A=0\)
d) Tìm tất cả giá trị nguyên của x để biểu thức A có giá trị nguyên.
Tìm gtnn của biểu thức sau:
A= \(\dfrac{x^2+2x+2018}{x^2}\)
Cho biểu thức P=\(\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)
a) Rút gọn P
b) Tính giá trị của P biết \(x=\dfrac{1}{4}\)
c) Tìm GTNN của biểu thức \(\dfrac{1}{P}\)
giúp mk vs!!!!
Cho biểu thức:
B = (\(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\)) . \(\dfrac{4x^2-4}{5}\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) C/m rằng: khi giá trị của x để giá trị của biểu thức được xác định.
Bài 148: Tính giá trị của biểu thức biết a+b+c=0
\(A=\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Bài 149: CMR nếu \(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ac\right)\left(a-abc\right)\)
và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)