Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow ab+bc+ac=0\)
Ta có : \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)=\left(a+b+c\right)^2=1\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{ab+bc+ac}{abc}=0\Rightarrow ab+bc+ac=0\)
Ta có : \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)=\left(a+b+c\right)^2=1\)
Bài 1 : Cho\(\frac{1}{2}a=\frac{3}{4}b\) và a-b=4,5 .tìm a,b
Bài 2: Tính
\(a,-\frac{3}{4}+\frac{3}{4}\div\frac{3}{5}\)
\(b,\frac{5}{6}-\left(\frac{5}{6}+\frac{1}{3}\right)-\frac{1}{2}\)
\(c,1\div\left(1-\frac{1}{2}\right)^2\)
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)vơi a,b,c \(\ne\) 0; b\(\ne\) c chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
a) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với a, b, c khác 0; b khác c). CMR \(\frac{a}{b}=\frac{a-c}{c-b}\)
b) Tìm các số nguyên n sao cho biểu thức sau là số nguyên: P = \(\frac{2n-1}{n-1}\)
c) Cho \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\). CMR: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho \(a,b,c\in Z;abc\ne0,\frac{a^2+b^2}{2}=ab;\frac{b^2+c^2}{2}=bc,\frac{a^2+c^2}{2}=ac\)
Tính : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
1/ Cho b2= ac. Chứng minh \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
2/ Cho \(\frac{a}{b}=\frac{b}{2c}=\frac{c}{4a}\) ( a,b,c \(\ne\) 0). Chứng minh b = c
* giúp e 2 bài này gấp mọi người ơi *
cho 3 số dương 0<a<b<c<1 cmr:\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< 2\)
m.n giúp mk mấy câu vio 7 với:
1)Cho \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+......+\frac{10}{1400}\)
\(E=\frac{1}{1+2}+\frac{1}{1+2+3}+......+\frac{1}{1+2+3+....+24}\)
Tính tỉ số D/E?
2)Giả sử \(\frac{a+b}{a+c}=\frac{a-b}{a-c}\) và a khác c;a khác -c;ac khác 0
Tính giá trị biểu thức \(A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}\)
Cho \(\frac{1}{c}\) = \(\frac{1}{2}\) ( \(\frac{1}{a}\) + \(\frac{1}{c}\) ) và a, b, c khác 0; b khác 0. Chứng tỏ rằng \(\frac{a}{b}\) = \(\frac{a-c}{c-b}\)
a/ Cho x,y,z khác 0 thỏa mãn \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
tính B=\(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
b/ Cho a,b,c,d khác 0. Tính
\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}\) biết x,y,z,t thỏa mãn :
\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+=d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)