cho các số dương x,y,z thỏa mãn b√a+c√b+a√c=3.tìm gtln của biểu thức 9/a^2+b^2+c^2
Xét các số thực a,b,c với \(b\ne a+c\) sao cho PT bậc 2 \(ax^2+bx+c=0\) có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\). Tìm GTLN và GTNN của biểu thức
\(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
cho a,b,c>=0 thỏa mãn a+b+c=3. Tìm GTLN của P=(a-b)(b-c)(a-c)
Cho a,b,c >0 thỏa mãn \(a+b+c=\sqrt{6063}\):
Tìm GTLN của biểu thức :
\(P=\dfrac{2a}{\sqrt{2a^2+2021}}+\dfrac{2b}{\sqrt{2b^2+2021}}+\dfrac{2c}{\sqrt{2c^2+2021}}\)
Cho a,b,c dương thỏa mãn : \(a+b+c\le3\)
Tìm GTLN của biểu thức
\(B=\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Cho a,b,c >0 thỏa mãn : \(a^2+b^2+c^2=abc\\\) .Tìm max của biểu thức :
\(P=\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\)
Cho a,b,c là các số thực thỏa mãn \(a\ge1,b\ge2,c\ge3\) và a+b+c=9.
Tìm GTNN của biểu thức \(P=\sqrt{a-1}+\sqrt{b-2}+\sqrt{c-3}\)
cho a,b,c>0 , tìm GTNN của biểu thức:
P= \(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{c^2+a^2}{b^2+ca}\)
Cho a,b,c>0 thỏa a + b + c = 3
Tìm GTNN của biểu thức C = \(a^5+b^5+c^5+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\)