\(3=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le3\)
\(M=2\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(a+b+c\right)+\dfrac{9}{a+b+c}\)
\(=2\left[a+b+c+\dfrac{9}{a+b+c}\right]-\dfrac{9}{a+b+c}\ge2.\sqrt{9}-\dfrac{9}{3}=6-3=3\)Min = 3 khi a=b=c =1