Ta có:
\(\left\{{}\begin{matrix}a=-b-c\\x=-y-z\end{matrix}\right.\)
Thế vào \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Rightarrow\dfrac{-b-c}{-y-z}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow2byz+2cyz+bz^2+cy^2=0\)
Ta cần chứng minh
\(ax^2+by^2+cz^2=0\)
\(\Leftrightarrow\left(-b-c\right)\left(-y-z\right)^2+by^2+cz^2=0\)
\(\Leftrightarrow2byz+2cyz+bz^2+cy^2=0\) (đúng)
Vậy ...