Cho a,b,c > 0 và ab+bc+ca=1 Chứng minh \(\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le2\left(a+b+c\right)\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
cho các số thực dương a,b,c thỏa mãn a+b+c=3. chứng m,inh rằng \(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{b^2\left(c+1\right)}{b+c+bc}+\frac{c^2\left(a+1\right)}{c+a+ca}\)
cho a,b,c là các số thực dương.cmr
\(\dfrac{bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{ac}{\left(b+c\right)\left(b+a\right)}+\dfrac{ab}{\left(c+a\right)\left(c+b\right)}\ge\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{2\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)}\)
Cho a, b, c là ba số hữu tỉ thỏa mãn điều kiện ab + bc + ca = 1.
Chứng minh rằng \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ.
cho a,b,c>0 thỏa mãn a+b+c=1
Tìm max của A=\(6\left(ab+bc+ca\right)+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)
Cho a,b,c >0 thỏa mãn ab+bc+ca=3abc
Tìm GTNN của \(Q=\frac{a^2}{c\cdot\left(c^2+a^2\right)}+\frac{b^2}{a\cdot\left(a^2+b^2\right)}+\frac{c^2}{b\cdot\left(b^2+c^2\right)}\)
cho a,b,c>0 và a+b+c=3
Tìm max của A=3(ab+bc+ca)+\(\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\)
Cho các số dương a,b,c thỏa mãn ab+bc+ca=1
Chứng minh bất đẳng thức \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le2\left(a+b+c\right)\)