Thay \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) và \(a+b=-c\), ta được:
\(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\\ =-c^3-3ab\cdot\left(-c\right)+c^3=3abc\)
Vậy \(a^3+b^3+c^3=3abc\)
Đây : Áp dụng hằng đẳng thức \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc=0\)
Mà a+b+c = 0 rồi nên\(a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\left(ĐPCM\right)\)