Lời giải:
Vì \(a,b,c\in [0;1]\Rightarrow b^2\leq b; c^3\leq c\)
\(\Rightarrow a+b^2+c^3-ab-bc-ac\leq a+b+c-ab-bc-ac(*)\)
\(a,b,c\leq 1\Rightarrow (a-1)(b-1)(c-1)\le 0\)
\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)
\(\Leftrightarrow abc-(ab+bc+ac)+(a+b+c)-1\leq 0\)
\(\Leftrightarrow a+b+c-(ab+bc+ac)\leq 1-abc\leq 1(**)\) (do $abc\geq 0$)
Từ \((*); (**)\Rightarrow a+b^2+c^3-ab-bc-ac\leq 1\)
Ta có đpcm.