cho các số a b c thỏa mãn a+b+c=3/2 cmr a-1/a^2 + b-1/b^2+c-1/c^2 <= 3/4
Câu 1: Cho \(x^2-6x+1=0\).Tính giá trị biểu thức B=\(\frac{x^4+8x^2+1}{x^2}\)
Câu 2:
a/ Rút gọn biểu thức P=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\). Trong đó a,b,c là các số đôi 1 phân biệt.
b/ Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
Câu 3: Cho các số x,y là các số thỏa mãn \(3x^2+x=4y^2+y\).CMR:
Cho a, b, c > 0. CMR :
\(\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Cho a,b,c > 0. CMR :
a)\(\frac{a^3}{b}\ge a^2+ab-b^2\)
b)\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
Cho a,b,c >0 cmr: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}\ge\frac{3}{2}\)
1CMR: x2+y2+8\(\ge\) xy+2x+2y
2 Cho a+b+c=6 . Cmr: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{3}{4}\)
3 Cho x+y+z+xy+yz+zx=6. Cmr: x2+y2+z2 \(\ge3\)
Cho a,b,c thỏa mãn a+b+c = 3/2
CMR :
a^2 + b^2 + c^2 >= 3/4