Mình đã sửa đề cho bạn
Bạn có thể tham khảo lời giải tại link sau:
Mình đã sửa đề cho bạn
Bạn có thể tham khảo lời giải tại link sau:
1,Giải pt \(\sqrt{30-\frac{5}{x^2}}+\sqrt{6x^2-\frac{5}{x^2}}=6x^2\)
2, Cho a b c > 0 thỏa mãn \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1.\)
Tính \(H=\frac{\sqrt{a}-\sqrt{b}}{1+c}+\frac{\sqrt{b}-\sqrt{c}}{1+a}+\frac{\sqrt{c}-\sqrt{a}}{1+b}\)
Cho các số thực dương a, b, c thỏa mãn: abc + a + b = 3ab. Chứng minh rằng:\(\sqrt{\frac{ab}{a+b+1}}+\sqrt{\frac{b}{bc+b+1}}+\sqrt{\frac{a}{ca+c+1}}\ge\sqrt{3}\)
Cho các số thực dương a,b,c thảo mãn \(a^2+b^2+c^2=1\). CHứng minh:
\(\sqrt{\dfrac{ab+2c^2}{1+ab-c^2}}+\sqrt{\dfrac{bc+2a^2}{1+bc-a^2}}+\sqrt{\dfrac{ca+2b^2}{1+ca-b^2}}\ge2+ab+bc+ac\)
1. Cho a,b,c là những số hữu tỉ khác 0, a=b+c
CM: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\) là 1 số hữu tỉ
2. Cho a,b,c là 3 số hữu tỉ khác nhau đôi một
CM: \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(a-c\right)^2}}\) là một số hữu tỉ
3. Cho a,b,c là 3 số hữu tỉ thỏa mãn ĐK ab+bc+ca=1
CM: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ
4. Rút gọn các biểu thức
a) \(\sqrt{4-4a+a^2}-2a\)
b)\(2b-\frac{\sqrt{b^2-4b+4}}{b-2}\)
c) \(\frac{\sqrt{4x^2-4x+1}}{2x-1}-1\)
Cho a,b,c thực dương thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le2\)
Chứng minh rằng : \(\frac{1}{\sqrt{5a^2+2ab+2b^2}}+\frac{1}{\sqrt{5b^2+2bc+2c^2}}+\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{2}{3}\)
1 . Cho x+y+z=xyz. Tìm Min A= \(\frac{y}{x\sqrt{y^2+1}}+\frac{z}{y\sqrt{z^2+1}}+\frac{x}{z\sqrt{x^2+1}}\)
2 . Cho a,b,c>0 thỏa a+b+c=3, tìm GTNN
\(P=\frac{25a^2}{\sqrt{2a^2+16ab+7b^2}}+\frac{25b^2}{\sqrt{2b^2+16bc+7c^2}}+\frac{c^2\left(a+3\right)}{a}\)
Cho các số thực dương thỏa mãn \(a+b+c\le\sqrt{3}\)
Tìm MAX: \(M=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
1. với \(a=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}};b=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\) tính giá trị biểu thức \(A=a^3+b^3-3\left(a+b\right)\)
2. Giải hệ \(\left\{{}\begin{matrix}2y^2-x^2=1\\2\left(x^3-y\right)=y^3-x\end{matrix}\right.\)
3. cho hai số thức m, n khác 0 thỏa mãn \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\). crm: \(\left(x^2+mx+n\right)\left(x^2+nx+m\right)=0\) luôn có nghiệm
4. cho a, b, c là độ dài ba cạnh của một tam giác. Cm: \(\sqrt{\frac{a}{2b+2c-a}}+\sqrt{\frac{b}{2a+2c-b}}+\sqrt{\frac{c}{2a+2b-c}}\ge\sqrt{3}\)
1.a)Giải phương trình \(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)
b) Giải hệ \(\left\{{}\begin{matrix}x^2+y^2-x-y=1\\x^2-3y^2-2xy+4x+8y-5=0\end{matrix}\right.\)
2. cho a, b, c dương thỏa mãn abc=1. tính \(A=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ca}\)