1/ ĐKXĐ: ...
\(VT=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{\left(1+1\right)\left(6-x+x+2\right)}=4\)
\(VP=\left(x-3\right)^2+4\ge4\)
\(\Rightarrow VP\ge VT\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}6-x=x+2\\x-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(\Rightarrow\) Phương trình vô nghiệm
b/ \(x^2+y^2+4-2xy+4x-4y-4y^2+12y-9=0\)
\(\Leftrightarrow\left(x-y+2\right)^2-\left(2y-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y+2=2y-3\\x-y+2=3-2y\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3y-5\\x=1-y\end{matrix}\right.\)
Thay vào pt đầu là xong
2/ \(A=\frac{1}{1+a+ab}+\frac{a}{a+ab+abc}+\frac{abc}{abc+c+ca}\)
\(=\frac{1}{1+a+ab}+\frac{a}{a+ab+1}+\frac{abc}{c\left(ab+1+a\right)}\)
\(=\frac{1}{1+a+ab}+\frac{a}{1+a+ab}+\frac{ab}{1+a+ab}=\frac{1+a+ab}{1+a+ab}=1\)