Ta có:
a + b + c = 0
\(\Rightarrow\) a = -b - c
\(\Rightarrow\) a2 = (-b - c)2
\(\Rightarrow\) a2 = b2 + 2bc + c2
\(\Rightarrow\) a2 - b2 - c2 = 2bc
\(\Rightarrow\) (a2 - b2 - c2)2 = (2bc)2
\(\Rightarrow\) a4 + b4 + c4 - 2a2b2 - 2a2c2 + 2b2c2 = 2b2c2
\(\Rightarrow\) a4 + b4 + c4 = 2a2b2 + 2a2c2 + 2b2c2
\(\Rightarrow\) 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2
\(\Rightarrow\) 2(a4 + b4 + c4) = (a2 + b2 + c2)2
\(\Rightarrow\) 2(a4 + b4 + c4) = 142
= 144
\(\Rightarrow\) a4 + b4 + c4 = 144/2 = 72