cho các số thực a,b,c không âm .Chứng minh:
\(\dfrac{4a}{a+b}+\dfrac{4b}{b+c}+\dfrac{4c}{c+a}+\dfrac{ab^2+bc^2+ca^2+abc}{a^2b+b^2c+c^2a+abc}\ge7\)
giúp với :(((
K=a√a4+7+b√b4+7+c√c4+7K=aa4+7+bb4+7+cc4+7
a,b,c>0
ab+bc+ca=3ab+bc+ca=3
tìm max K ?
Cho a,b,c >0 thỏa mãn : \(a^2+b^2+c^2=abc\\\) .Tìm max của biểu thức :
\(P=\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\)
Cho a;b;c là các số thực không âm: a+b+c=2
CMR: \(\left(ab\right)^2 +\left(bc\right)^2+\left(ac\right)^2-2abc\le1\)
cho a,b,c là số thực dương chứng minh
\(\dfrac{2\left(a^4+b^4+c^4\right)}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}+\dfrac{ab+bc+ca}{a^3+b^3+c^3}\ge2\)
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\).Tìm Max:
\(P=\dfrac{a}{a^2+4a+3}+\dfrac{b}{b^2+4b+3}+\dfrac{c}{c^2+4c+3}\)
Cho a,b,c,d là các số thực không âm thỏa \(a^2+b^2+c^2+d^2=4\). CMR:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{\sqrt{2}}\sqrt{2+ab+ac+ad+bc+bd+dc}\)
Cho 3 số thực dương a,b,c thoả mãn a+b+c=3.CMR (a³+ab²):(a²+b+b²) + (b³+bc²):(b²+c+c²) + (c³+ca²):(c²+a+a²) >=2
Cho 3 số thực a,b,c. CMR: (5a + 4b + 3c)2 ≥ 44(ab + bc + ca)